a, Ta có \(AB^2=BC^2+AC^2\Leftrightarrow5a^2=3a^2+2a^2\)
=> tam giác ABC vuông tại C
b, Do ^A ; ^B phụ nhau
sinA = cosB = BC/AB = \(\dfrac{\sqrt{3}}{\sqrt{5}}\)
cosA = sinB = \(\dfrac{AC}{AB}=\dfrac{\sqrt{2}}{\sqrt{5}}\)
tanA = cotB = \(\dfrac{BC}{AC}=\dfrac{\sqrt{3}}{\sqrt{2}}\)
cotA = tanB = \(\dfrac{\sqrt{2}}{\sqrt{3}}\)