\(A=x^6-2x^4+x^3+x^2-x\\ =\left(x^6-x^4\right)+\left(-x^4+x^2\right)+\left(x^3-x\right)\\ =x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\\ =\left(x^3-x\right)\left(x^3-x+1\right)\\ =\left(x^3-x\right)\left[\left(x^3-x\right)+1\right]\)
Thay `x^3-x=6` vào A ta có:
\(A=6\cdot\left(6+1\right)=6\cdot7=42\)
vậy: ...