\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
\(2024^{2024}+1>2024^{2023}+1\)
=>\(\dfrac{2023}{2024^{2024}+1}< \dfrac{2023}{2024^{2023}+1}\)
=>\(\dfrac{2023}{2024^{2024}+1}+1< \dfrac{2023}{2024^{2023}+1}+1\)
=>2024A<2024B
=>A<B