\(x,y>0;x+y=2\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(x^5y^3+y^5x^3=\dfrac{1}{8}.2xy.2xy.2xy.\left(x^2+y^2\right)\le\dfrac{1}{8}.\left(\dfrac{2xy+2xy+2xy+x^2+y^2}{4}\right)^4=\dfrac{1}{8}\left(1+xy\right)^4\le\dfrac{1}{8}\left[1+\left(\dfrac{x+y}{2}\right)^2\right]^4=2\left(đpcm\right)\)
Đẳng thức xảy ra khi \(x=y=1\)

