a: \(B=1+3+3^2+3^3+...+3^{98}+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\)
b: \(B=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+3^{96}\right)⋮40\)