a: \(\dfrac{16}{5}-x=\dfrac{4}{5}-\dfrac{3}{10}\)
=>\(\dfrac{16}{5}-x=\dfrac{8}{10}-\dfrac{3}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)
=>\(x=\dfrac{16}{5}-\dfrac{1}{2}=\dfrac{32-5}{10}=\dfrac{27}{10}\)
b: \(x+\dfrac{1}{3}=\dfrac{2}{5}-\left(-\dfrac{1}{3}\right)\)
=>\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
=>\(x=\dfrac{2}{5}\)
c: \(\dfrac{4}{3}+\dfrac{5}{8}:x=\dfrac{1}{12}\)
=>\(\dfrac{5}{8}:x=\dfrac{1}{12}-\dfrac{4}{3}=\dfrac{1}{12}-\dfrac{16}{12}=\dfrac{-15}{12}=-\dfrac{5}{4}\)
=>\(x=-\dfrac{5}{8}:\dfrac{5}{4}=\dfrac{-5}{8}\cdot\dfrac{4}{5}=-\dfrac{4}{8}=-\dfrac{1}{2}\)
d: \(-\dfrac{2}{5}+\dfrac{5}{6}x=-\dfrac{4}{15}\)
=>\(\dfrac{5}{6}x=-\dfrac{4}{15}+\dfrac{2}{5}=\dfrac{2}{15}\)
=>\(x=\dfrac{2}{15}:\dfrac{5}{6}=\dfrac{2}{15}\cdot\dfrac{6}{5}=\dfrac{12}{75}=\dfrac{4}{25}\)
e: \(\dfrac{7}{6}-x:\dfrac{3}{4}=\dfrac{1}{12}\)
=>\(x:\dfrac{3}{4}=\dfrac{7}{6}-\dfrac{1}{12}=\dfrac{14}{12}-\dfrac{1}{12}=\dfrac{13}{12}\)
=>\(x=\dfrac{13}{12}\cdot\dfrac{3}{4}=\dfrac{39}{48}=\dfrac{13}{16}\)
f: \(\dfrac{3}{7}-\dfrac{1}{21}x=\dfrac{1}{3}\)
=>\(\dfrac{1}{21}x=\dfrac{3}{7}-\dfrac{1}{3}=\dfrac{9-7}{21}=\dfrac{2}{21}\)
=>x=2
g: \(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(-\dfrac{3}{5}:x+1,5\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{16}=0\\-\dfrac{3}{5}:x+1,5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\-\dfrac{3}{5}:x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{9}{16}\cdot\dfrac{4}{3}=\dfrac{36}{48}=\dfrac{3}{4}\\x=\dfrac{3}{5}:\dfrac{3}{2}=\dfrac{2}{5}\end{matrix}\right.\)
h: \(\left(x-\dfrac{1}{4}\right)^2=4\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{4}=2\\x-\dfrac{1}{4}=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
i: \(\left(x+\dfrac{2}{5}\right)^3=27\)
=>\(x+\dfrac{2}{5}=3\)
=>x=3-2/5=13/5