\(A=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+8\right)}\)
\(=\dfrac{1}{3}\cdot\dfrac{2}{4}+\dfrac{5\cdot6}{9}\)
\(=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{21}{6}=\dfrac{7}{2}\)
\(A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\\ =\dfrac{2^{12}\cdot3^5-\left(2^2\right)^6\cdot\left(3^2\right)^2}{2^{12}\cdot3^6+\left(2^3\right)^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-\left(5^2\right)^5\cdot\left(7^2\right)^2}{\left(5^3\cdot7\right)^3+5^9\cdot\left(2\cdot7\right)^3}\\ =\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\\ =\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}\\ =\dfrac{2}{12}-\dfrac{5\cdot\left(-6\right)}{1+8}\\ =\dfrac{1}{6}-\dfrac{-30}{9}=\dfrac{7}{2}\)