\(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
\(=>A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-x+6}{2x\left(x+3\right)}\\ =\dfrac{2x+6}{2x\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\\ =\dfrac{1}{x}\\ =>A=\dfrac{1}{x}\)


