\(ĐK:x\ge0\)
\(Đặt:\sqrt{x}=y^2\ge0\)
\(PT\) \(trở\) \(thành\)
\(\sqrt{y^2+4-4y}+\sqrt{y^2+1-2y}=3\)
\(\Leftrightarrow\left|x-2\right|+\left|y-1\right|=3\)
\(-Với\) \(y< 1\)
\(\Rightarrow2-y+1-y=3\)
\(\Leftrightarrow y=0\) \((T/M)\)
\(\Rightarrow x=0\) \((T/M)\)
\(-Với\) \(1\le x< 2\)
\(\Rightarrow2-y+y-1=3\)
\(\Leftrightarrow1=3\) \((vô lí)\)
\(-Với\) \(y\ge2\)
\(\Rightarrow y-2+y-1=3\)
\(\Leftrightarrow y=3\) \((T/M)\)
\(\Rightarrow y^2=9\)
\(\Leftrightarrow\sqrt{x}=9\)
\(\Leftrightarrow x=81\) \((T/M)\)
Vậy PT có 2 nghiệm phân biệt \(x=0;x=81\)

