ĐK: \(x>1\)
\(C=\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{\sqrt{x^3}-x}{1-\sqrt{x}}\\ =\dfrac{\sqrt{x}-\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{x\left(\sqrt{x}-1\right)}{1-\sqrt{x}}\\ =\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}+x\\ =x-2\sqrt{x-1}\\ =\left(x-1\right)-2\sqrt{x-1}+1\\ =\left(\sqrt{x-1}-1\right)^2\)