\(3^{2x+1}=243\)
\(3^{2x+1}=3^5\)
\(2x+1=5\)
\(2x=5-1\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
`3^(2x+1) = 243`
`=> 3^(2x+1) = 3^5`
`=> 2x+1=5`
`=> 2x = 5-1=4`
`=> x=4/2 =2`
Vậy `x=2`
`3^(2x+1) = 243`
`=> 3^(2x+1) = 2^5`
`=> 2x+1 =5`
`=> x =2`
\(3^{2x+1}=243\)
\(\Rightarrow3^{2x+1}=3^5\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2.\)
Vậy \(x=2.\)