a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: \(\Leftrightarrow\dfrac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
=>x2+2x-x+2=2
=>x(x+1)=0
=>x=-1
`(3x-2)(4x-5) = 0`
`=> 3x - 2 = 0`
`4x - 5 = 0`
`=> x = 2/3`.
`x = 5/4`.
Vậy `S = {2/3; 5/4}`
b, `(x+2)/(x-2) - 1/x = 2/(x(x-2))`
Đk: `x ne 2, 0`.
`=> (x^2 + 2x - x + 2)/(x(x-2)) = 2/(x(x-2))`
`=> x^2 + x + 2 = 2`
`=> x^2 + x = 0`
`=> x(x+1) = 0`
`=> x = 0`
`x + 1 = 0`
`=> x = 0.`
`x = -1`.