ta có
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
................
\(\dfrac{1}{20^2}=\dfrac{1}{20.20}< \dfrac{1}{19.20}\)
=> A<\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}\)
=> A< \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
=>A< \(\dfrac{1}{2}-\dfrac{1}{20}< 1\)