a: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot7}+\dfrac{1}{3\cdot7}-\dfrac{1}{7\cdot9}+...+\dfrac{1}{13\cdot15}-\dfrac{1}{15\cdot19}\)
\(=\dfrac{1}{3}-\dfrac{1}{15\cdot19}=\dfrac{94}{285}\)
b: \(B=\dfrac{1}{6}\cdot A\)
=1/6*94/285
=47/855
c: \(C=\dfrac{1}{8}\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{48\cdot49\cdot50}\right)\)
\(=\dfrac{1}{16}\cdot\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{48\cdot49\cdot50}\right)\)
\(=\dfrac{1}{16}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{48\cdot49}-\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{16}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2450}\right)=\dfrac{153}{4900}\)