ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\)
\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\\ \Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x-5\right)}\\ \Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{2\left(x^2+10x+25\right)-\left(x^2-10x+25\right)-\left(x^2+25x\right)}{2x\left(x-5\right)\left(x-5\right)}=0\)
\(\Rightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\\ \Leftrightarrow5x+25=0\\ \Leftrightarrow x=-5\left(ktm\right)\)