Đặt \(\sqrt{e^x-1}=t\Rightarrow e^x=t^2+1\Rightarrow e^xdx=2t.dt\) ; \(\left\{{}\begin{matrix}x=ln2\Rightarrow t=1\\x=ln5\Rightarrow t=2\end{matrix}\right.\)
\(D=\int\limits^2_1\dfrac{\left(t^2+1\right).2tdt}{t}=2\int\limits^2_1\left(t^2+1\right)dt=2\left(\dfrac{t^3}{3}+t\right)|^2_1=\dfrac{20}{3}\)