\(1,=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\\ 2,=2+2\sqrt{2}-2\sqrt{2}=2\\ 3,=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\\ 4,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ 5,=32-6\sqrt{28}+6\sqrt{28}=32\\ 6,=2-\sqrt{3}+\sqrt{3}-1=1\\ 7,=19-9=10\\ 8,=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{24}{2}=12\\ 9,=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\\ 10,=\sqrt{3}+1+\sqrt{3}-1-\dfrac{5\sqrt{3}+10\sqrt{2}-5\sqrt{3}+10\sqrt{2}}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}\\ =2\sqrt{3}+\dfrac{20\sqrt{2}}{5}=2\sqrt{3}+4\sqrt{2}\)