a, ĐKXĐ:\(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\1-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x^2\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)
\(A=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x^2-1\right)}=\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
b,\(x=-2\Rightarrow A=\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2\left(-2+1\right)}=\dfrac{1}{2.\left(-1\right)}=\dfrac{1}{-2}=-0,5\)


