\(3,=\left(\sqrt{7}+3\right)\sqrt{\left(3-\sqrt{7}\right)^2}=\left(3-\sqrt{7}\right)\left(\sqrt{7}+3\right)=9-7=2\\ 4,=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\dfrac{2+\sqrt{3}}{1}+\dfrac{6\left(3+\sqrt{3}\right)}{6}=\sqrt{3}-2-\sqrt{3}+3+\sqrt{3}=\sqrt{3}+1\)
\(3.\left(\sqrt{7}+3\right)\cdot\left(3-\sqrt{7}\right)=2\)
\(4.\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{6}{\sqrt{3}\cdot\left(\sqrt{3}-1\right)}=\sqrt{3}+3+\sqrt{3}=3+2\sqrt{3}\)

