a) \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(\sqrt{x}-1\right)\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
c)\(xy-y\sqrt{x}+\sqrt{x}-1=\sqrt{x}y\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}y+1\right)\)

