a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
D là trung điểm của BC
Do đó: MD là đường trung bình của ΔABC
Suy ra: MD//AC
Xét tứ giác AMDC có MD//AC và \(\widehat{A}=90^0\)
nên AMDC là hình thang vuông
c: Xét ΔGBC có
Q là trung điểm của GB
P là trung điểm của GC
Do đó: QP là đường trung bình của ΔGBC
Suy ra: QP//BC và \(QP=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành


