`14)x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2(x-1)(x^2+x+1)+x^2+x+1`
`=(x^2+x+1)(x^3-x^2+1)`
`15)x^5-x^4-1`
`=x^5-x^4+x^3-x^3-1`
`=x^3(x^2-x+1)-(x+1)(x^2-x+1)`
`=(x^2-x+1)(x^3-x-1)`
14: \(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
15: \(x^5-x^4-1=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\\ =x^2\left(x^3-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)


