`8/(3x-1)=3x+1` ĐKXĐ : `x \ne 1/3`
`<=>8=(3x+1)(3x-1)`
`<=>3x^2-1=8`
`<=>3x^2=9`
`<=>x^2=3`
`<=>x=\pm \sqrt{3}` ( tm ĐKXĐ )
Vậy `S={\pm \sqrt{3}}`
Câu 1:
ĐKXĐ: $x\neq \frac{1}{3}$
PT $\Leftrightarrow 8=(3x+1)(3x-1)$
$\Leftrightarrow 8=9x^2-1$
$\Leftrightarrow 9=9x^2$
$\Leftrightarrow 1=x^2$
$\Leftrightarrow x=\pm 1$
Đáp án D.
Câu 2:
\(\frac{2-x}{3}< \frac{3-2x}{5}\Leftrightarrow 5(2-x)< 3(3-2x)\)
\(\Leftrightarrow 10-5x< 9-6x\Leftrightarrow x< -1\)
Đáp án C.
Câu 3:
\(A=\frac{x^2-x+3}{x-3}=\frac{x(x-3)+2(x-3)+9}{x-3}\)
\(=x+2+\frac{9}{x-3}=(x-3)+\frac{9}{x-3}+5\geq 2\sqrt{(x-3).\frac{9}{x-3}}+5\) (theo BĐT Cô-si)
\(=6+5=11\)
Đáp án C.
`8/(3x-1)=3x+1` ĐKXĐ : `x \ne 1/3`
`<=>8=(3x+1)(3x-1)`
`<=>8=9x^2-1`
`<=>9x^2-9=0`
`<=>x^2-1=0`
`<=>(x-1)(x+1)=0`
`<=>` \( \left[\begin{array}{} x-1=0\\ x+1=0 \end{array} \right. \)
`<=>` \( \left[\begin{array}{} x=1 \ \rm(tm)\\ x=-1 \ \rm(tm) \end{array} \right.\)
Vậy `S={\pm 1}`
`(2-x)/3<(3-2x)/5`
`<=>(5(2-x))/15<(3(3-2x))/15`
`<=>5(2-x)<3(3-2x)`
`<=>10-5x<9-6x`
`<=>-5x+6x<9-10`
`<=>x<-1`
`->` Chọn C


