Bài 5: Phương trình chứa ẩn ở mẫu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 13:11

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\left(1-\dfrac{x-1}{x+1}\right)\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{x+1-x+1}{x+1}\)

\(\Leftrightarrow\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{6x}{x+1}\)

\(\Leftrightarrow\dfrac{4x}{\left(x-1\right)\left(x+1\right)}=\dfrac{6x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(4x=6x\left(x-1\right)\)

\(\Leftrightarrow4x-6x^2+6x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow x\left(-6x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;\dfrac{5}{3}\right\}\)

b)

ĐKXĐ: \(x\notin\left\{-3;1\right\}\)

Ta có: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}+\dfrac{4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+8x-3-2x^2-3x+5+4-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Vậy: \(S=\varnothing\)

c) Ta có: \(\dfrac{2}{x-3}=\dfrac{2x+5}{x^2-x}\)

\(\Leftrightarrow\dfrac{2\left(x^2-x\right)}{x\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{x\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(2x^2-2x=2x^2-6x+5x-15\)

\(\Leftrightarrow-2x+6x-5x=-15\)

\(\Leftrightarrow-x=-15\)

hay x=15(thỏa ĐK)

Vậy: S={15}

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 13:22

d)

ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{1}{2x-2}-\dfrac{2x+1}{x^2+x+1}+\dfrac{3}{2x+2}=0\)

\(\Leftrightarrow\dfrac{x+1}{2\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{2x+1}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{x+1+3x-3}{2\left(x-1\right)\left(x+1\right)}-\dfrac{2x+1}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{4x-2}{2\left(x-1\right)\left(x+1\right)}-\dfrac{2x+1}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{2x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x+1}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}-\dfrac{\left(2x+1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}=0\)

Suy ra: \(2x^3+2x^2+2x-x^2-x-1-\left(2x^3-2x+x^2-1\right)=0\)

\(\Leftrightarrow2x^3+x^2+x-1-2x^3+2x-x^2+1=0\)

\(\Leftrightarrow3x=0\)

hay x=0

Vậy:S={0}

e)

ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Ta có: \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

\(\Leftrightarrow\dfrac{2\left(12x+1\right)\left(3x+1\right)}{4\left(3x-1\right)\left(3x+1\right)}-\dfrac{4\left(9x-5\right)\left(3x-1\right)}{4\left(3x-1\right)\left(3x+1\right)}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

Suy ra: \(2\left(36x^2+12x+3x+1\right)-4\left(27x^2-9x-15x+5\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+30x+2-108x^2+96x-20-108x+36x^2+9=0\)

\(\Leftrightarrow18x-9=0\)

\(\Leftrightarrow18x=9\)

hay \(x=\dfrac{1}{2}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)


Các câu hỏi tương tự
Nguyễn Duy Hiếu
Xem chi tiết
Bạn Tên Là Long
Xem chi tiết
Khoi Nguyen
Xem chi tiết
Lê Thành Nam
Xem chi tiết
Pham Anh Tuan
Xem chi tiết
Dii Quèngg
Xem chi tiết
long
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
hoàng tuyết trinh
Xem chi tiết