giải phương trình sau:
a) \(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
b) \(\dfrac{x}{x-3}-\dfrac{x}{x-5}=\dfrac{x}{x-4}-\dfrac{x}{x-6}\)
c) \(\dfrac{4}{x^2-3x+2}-\dfrac{3}{2x^2-6x+1}+1=0\)
d) \(\dfrac{1}{x-1}+\dfrac{2}{x-2}+\dfrac{3}{x-3}=\dfrac{6}{x-6}\)
5.c) \(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x-1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
6.b) \(\dfrac{4}{2x^3+3x^2-8x-12}-\dfrac{1}{x^2-4}-\dfrac{4}{2x^2+7x+6}+\dfrac{1}{2x+3}=0\)
B1 : Giải phương trình
a. \(\dfrac{x-2}{x-4}-\dfrac{1}{x-2}=-2\)
b. \(\dfrac{x-2}{x+3}-\dfrac{x+1}{3-x}=\dfrac{2x^2+6}{x^2-9}\)
c. \(\dfrac{2x-1}{3}-\dfrac{x-6}{4}=\dfrac{3x-2}{2}\)
d. \(\dfrac{3x-1}{4}+\dfrac{8x-21}{20}=\dfrac{3\left(x+2\right)}{5}-2\)
Giải các phương trình sau :
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\)
b) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)
c) \(\dfrac{1}{x-1}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
d) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)
23) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
24) \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
25) \(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
1) \(\dfrac{7x-3}{x-1}\) = \(\dfrac{2}{3}\)
2) \(\dfrac{2\left(3-7x\right)}{1+x}\) = \(\dfrac{1}{2}\)
3) \(\dfrac{x^{2^{ }}-6}{x}\) = x + \(\dfrac{3}{2}\)
4) \(\dfrac{5}{3x+2}\) = 2x - 1
5) \(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}\) = 0
6) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
Giải các phương trình sau :
a) \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2+1\right)}{x^2-4}\)
b) \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
c) \(\dfrac{2}{x-1}+\dfrac{2x+3}{x^2+x+1}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
d) \(\dfrac{x^3-\left(x-1\right)^3}{\left(4x+3\right)\left(x-5\right)}=\dfrac{7x-1}{4x+3}-\dfrac{x}{x-5}\)
\(a,\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)
\(b,\dfrac{2x-1}{x^2+4x-5}+\dfrac{x-2}{x^2-10x+9}=\dfrac{3x-12}{x^2-4x-45}\)
giải các bất pt sau:
a, 4x-10<0
b, 2x+x+12\(\ge0\)
c, x-5\(\ge3-x\)
d, 7-3x>9-x
đ, 2x-(3-5x)\(\le4\left(x+3\right)\)
e, 3x-6+x<9-x
f, 2t-3+5t\(\ge\)4t+12
g, 3y-2\(\le2y-3\)
h,3-4x+24+6x\(\ge x+27+3x\)
i, 5-(6-x)\(\le4\left(3-2x\right)\)
k, 5(2x-3)- 4(5x-7)\(\ge19-2\left(x+11\right)\)
l, \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\)
m, \(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\)
n, \(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\)