Câu 3:
a: Sửa đề: \(A=1+2+2^2+2^3+\cdots+2^{63}\)
=>2A=\(2+2^2+2^3+2^4+\cdots+2^{64}\)
=>2A-A=\(2+2^2+2^3+\ldots+2^{64}-1-2-2^2-\cdots-2^{63}\)
=>A=\(2^{64}-1\)
b: Ta có: \(B=1+3+3^2+\cdots+3^{2000}\)
=>3B=\(3+3^2+3^3+\cdots+3^{2001}\)
=>3B-B=\(3+3^2+3^3+\cdots+3^{2001}-1-3-\cdots-3^{2000}\)
=>2B=\(3^{2001}-1\)
=>\(B=\frac{3^{2001}-1}{2}\)
c: Ta có: \(C=2+2^3+2^5+2^7+\cdots+2^{2009}\)
=>4C=\(2^3+2^5+2^7+\cdots+2^{2011}\)
=>4C-C=\(2^3+2^5+\ldots+2^{2011}-2-2^3-\cdots-2^{2009}\)
=>3C=\(2^{2011}-2\)
=>\(C=\frac{2^{2011}-2}{3}\)
Câu 2:
\(\left(5^{x}\right)^2=125^3:5^2\)
=>\(5^{2x}=5^9:5^2=5^7\)
=>2x=7
=>x=3,5
Câu 1:
a: \(\left\lbrack19^{20}+19^{19}\right\rbrack:19^{18}\)
\(=\frac{19^{20}}{19^{18}}+\frac{19^{19}}{19^{18}}\)
\(=19^2+19=380\)
b: \(\left\lbrack8^{2018}+8^{2019}\right\rbrack:8^{2019}\)
\(=\frac{8^{2018}}{8^{2019}}+\frac{8^{2019}}{8^{2019}}=\frac18+1=\frac98\)