Bài 6
a) \(5\left(x-2\right)-4\left(x-2\right)=14\)
\(\left(x-2\right)\left(5-4\right)=14\)
\(x-2=14\)
\(x=14+2\)
\(x=16\) (nhận)
Vậy \(x=16\)
b) \(-2\left(x+1\right)-\left(x-5\right)=-2x-1\)
\(-2x-2-x+5+2x=-1\)
\(-x=-1+2-5\)
\(-x=-4\)
\(x=4\) (nhận)
Vậy \(x=4\)
c) \(x\left(x+5\right)=0\)
\(x=0\) (nhận) hoặc \(x+5=0\)
*) \(x+5=0\)
\(x=-5\) (nhận)
Vậy \(x=-5;x=0\)
d) \(\left(-2x\right).\left(x+3\right)=0\)
\(-2x=0\) hoặc \(x+3=0\)
*) \(-2x=0\)
\(x=0\) (nhận)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\) (nhận)
Vậy \(x=-3;x=0\)
e) \(\left(6-x\right)\left(x+10\right)=0\)
\(6-x=0\) hoặc \(x+10=0\)
*) \(6-x=0\)
\(x=6-0\)
\(x=6\) (nhận)
*) \(x+10=0\)
\(x=0-10\)
\(x=-10\) (nhận)
Vậy \(x=-10;x=6\)
f) \(\left(5x+20\right)\left(x^2+1\right)=0\)
\(5x+20=0\) hoặc \(x^2+1=0\)
*) \(5x+20=0\)
\(5x=0-20\)
\(5x=-20\)
\(x=-20:5\)
\(x=-4\) (nhận)
*) \(x^2+1=0\)
\(x^2=0-1\)
\(x^2=-1\) (vô lý)
Vậy \(x=-4\)
g) \(3.7^{x+1}-7^{x+2}=-28\)
\(7^{x+1}.\left(3-7\right)=-28\)
\(7^{x+1}.\left(-4\right)=-28\)
\(7^{x+1}=-28:\left(-4\right)\)
\(7^{x+1}=7\)
\(7^{x+1}=7^1\)
\(x+1=1\)
\(x=0\) (nhận)
Vậy \(x=0\)
h) \(2.5^{x+1}-3.5^{x+2}=-1625\)
\(5^{x+1}.\left(2-3.5\right)=-1625\)
\(5^{x+1}.\left(-13\right)=-1625\)
\(5^{x+1}=-1625:\left(-13\right)\)
\(5^{x+1}=125\)
\(5^{x+1}=5^3\)
\(x+1=3\)
\(x=3-1\)
\(x=2\) (nhận)
Vậy \(x=2\)