Bài 1
1) \(2xy^2-8xy+\left(3xy+10-2xy^2\right)\)
\(=2xy^2-8xy+3xy+10-2xy^2\)
\(=\left(2xy^2-2xy^2\right)+\left(-8xy+3xy\right)+10\)
\(=-5xy+10\)
2) \(\left(-4x^2-2xy+y^2\right)-\left(x^2+y^2\right)+\left(5x^2-5xy+1\right)\)
\(=-4x^2-2xy+y^2-x^2-y^2+5x^2-5xy+1\)
\(=\left(-4x^2-x^2+5x^2\right)+\left(-2xy+5xy\right)+\left(y^2-y^2\right)+1\)
\(=3xy+1\)
3) \(\left(-2x^2+\dfrac{3}{4}y^2-\dfrac{7}{2}xy\right).\left(-4xy^2\right)\)
\(=-2x^2.\left(-4xy^2\right)+\dfrac{3}{4}y^2.\left(-4xy^2\right)-\dfrac{7}{2}xy.\left(-4xy^2\right)\)
\(=8x^3y^2-3xy^4+14x^2y^3\)
4) \(\left(x^3y^3-\dfrac{1}{2}x^2y^3-4x^3y^2\right):\left(\dfrac{-1}{2}x^2y\right)\)
\(=x^3y^3:\left(\dfrac{-1}{2}x^2y\right)-\dfrac{1}{2}x^2y^3:\left(\dfrac{-1}{2}x^2y\right)-4x^3y^2:\left(\dfrac{-1}{2}x^2y\right)\)
\(=-2xy^2+y^2+8xy\)
5) \(x^2.\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^2.x+x^2.\left(-y\right)+x^2.1+x^2.x+x^2.y+\left(-1\right).x+\left(-1.y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=\left(x^3+x^3\right)+\left(-x^2y+x^2y\right)+x^2-x-y\)
\(=2x^3+x^2-x-y\)
6) \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=3x.2x+3x.11-5.2x-5.11-6.\left(x^2+14x+49\right)\)
\(=6x^2+33x-10x-55-6x^2+84x-294\)
\(=\left(6x^2-6x^2\right)+\left(33x-10x+84x\right)+\left(-55-294\right)\)
\(=107x-349\)