y=???????????????????????????????????????????? tao thách đứa nào trả lời được
y=???????????????????????????????????????????? tao thách đứa nào trả lời được
Điều kiện \(x\ge1\)Aps dụng BĐT AM-GM ta có
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\le x\)Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=1\\x-1=\frac{1}{x}\end{cases}\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}}\)
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
P=\(\left(\frac{1}{\sqrt{x}}-\frac{2}{x+\sqrt{x}}\right)\div\frac{1}{\sqrt{x}+1}\)
=>P=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}\cdot\sqrt{x}+1}-\frac{2}{\sqrt{x}.\sqrt{x+1}}\right)\times\frac{\sqrt{x}+1}{1}\)
=>P=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
ta có \(A=\frac{1}{x^3+y^3}+\frac{4}{xy}=\frac{1}{\left(x+y\right)\left(x^2-xy+y^2\right)}+\frac{4}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\)
áp dụng bất đẳng thức svác sơ ta có
\(\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\ge\frac{16}{x^2+y^2+2xy}=16\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> \(\frac{1}{xy}\ge4\)
=> \(A\ge20\)
dấu = xảy ra <=> x=y=1/2
a,\(8x^3-12x^2+6x-5=0\Leftrightarrow8\left(x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\right)-4=0\)
\(\Leftrightarrow8\left(x-\frac{1}{2}\right)^3=4\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt[3]{2}}+\frac{1}{2}\)
D= \(\frac{x^2-2x+2000}{x^2}\)= 1-\(\frac{2x}{x^2}\)+\(\frac{2000}{x^2}\)
Đặt t= \(\frac{1}{2}\)=> D= 2000t2-2t+1 = (\(20\sqrt{5}t\))2-2.\(20\sqrt{5}t\).\(\frac{1}{20\sqrt{5}}\)+\(\left(\frac{1}{20\sqrt{5}}\right)^2\)\(-\left(\frac{1}{20\sqrt{5}}\right)^2\)+1
D= (\(20\sqrt{5}t\)-\(\frac{1}{20\sqrt{5}}\)) 2+\(\frac{1999}{2000}\)\(\ge\)\(\frac{1999}{2000}\)
Min D= \(\frac{1999}{2000}\)khi \(20\sqrt{5}t\)\(-\frac{1}{20\sqrt{5}}\)= 0 => t = \(\frac{1}{2000}\)=> \(\frac{1}{x}\)= \(\frac{1}{2000}\)=> x= 2000
Bài 1: tìm cặp số \(\left(x,y\right)\)thỏa mãn:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a+b+c\ne0\);\(a=2017\).tính \(b,c\)
Bài 3: a) tìm x,y,z biết \(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
c) tìm x,y biết \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
d) tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)
[TEX]\frac{x}{2} = \frac{y}{3} <=> \frac{x}{8} = \frac{y}{12}[/TEX]
[TEX]\frac{y}{4} = \frac{z}{5} <=> \frac{y}{12} = \frac{z}{15}[/TEX]
Suy ra:
[TEX]\frac{x}{8} = \frac{y}{12} = \frac{z}{15} [/TEX]
Mặt khác: [TEX]x+y+z=10 [/TEX]
Áp dụng tính chấmơẻ rộng của dãy tỉ số bằng nhau:
[TEX]\frac{x+y+z}{8+12+15} = \frac{10}{35} = \frac{2}{7} [/TEX]
[TEX]x= \frac{16}{7}[/TEX]
[TEX]y= \frac{24}{7}[/TEX]
[TEX]z= \frac{30}{7}[/TEX]