ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
P=\(\left(\frac{1}{\sqrt{x}}-\frac{2}{x+\sqrt{x}}\right)\div\frac{1}{\sqrt{x}+1}\)
=>P=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}\cdot\sqrt{x}+1}-\frac{2}{\sqrt{x}.\sqrt{x+1}}\right)\times\frac{\sqrt{x}+1}{1}\)
=>P=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)
Điều kiện \(x\ge1\)Aps dụng BĐT AM-GM ta có
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\le x\)Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=1\\x-1=\frac{1}{x}\end{cases}\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\frac{5523}{\frac{\frac{\frac{\frac{\frac{\frac{648365}{5544+2}}{65684}}{7994}}{58744}}{6552}}{6552}}\)
\(y=\frac{1}{4}x^2-x-\sqrt{4x-x^2}\)
\(y=\frac{1}{x^2+\sqrt{x}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\)