B1:biến đổi (2) hoặc (1)
B2:Thay vào nhau thôi. Kết quả là
\(\hept{\begin{cases}x=-\frac{4}{3}\\y=\frac{2}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
B1:biến đổi (2) hoặc (1)
B2:Thay vào nhau thôi. Kết quả là
\(\hept{\begin{cases}x=-\frac{4}{3}\\y=\frac{2}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
cho he phuong trinh 3x-y=2m+3 va x+2y=3m+1 tim m de he phuong trinh co 2 nghiem x y thoa man x^2+y^2=5
giai he phuong trinh
x+2\x+1\y=4
1\x^2+1\xy+x\y=3
giai he phuong trinh x/x-1 + 2y/y+2 = 3 va 2x/x-1 - y/y+2 = -4
giai he phuong trinh
2(x+y) + √(x+1) = 4
(x+y) - 3√(x+1)=-5
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
Cho he phuong trinh sau:
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
Tim m de he phuong trinh co nghiem duy nhat (x;y) thoa man P= xy dat gia tri lon nhat.
giai he phuong trinh
2x^2+y^2-3xy+3x-2y+1=0
4x^2-y^2+x+4=cbh(2x+y)+cbh(x+4y)
cbh là Căn bậc hai
Giai he phuong trinh: \(\hept{\begin{cases}\frac{2}{x}+\frac{5}{x+y}=2\\\frac{3}{x}+\frac{1}{x+y}=1,7\end{cases}}\)
Giai he phuong trinh bang phuong phap cong va phuong phap the
<=> \(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)