\(\frac{x}{x-2}+\frac{x+2}{x}>2\Rightarrow\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
\(\Rightarrow\frac{x^2+x^2-4-2x\left(x-2\right)}{x\left(x-2\right)}>0\Rightarrow\frac{4x-4}{x\left(x-2\right)}>0\)
TH1 \(\hept{\begin{cases}4x-4>0\\x^2-2x>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}\left(l\right)}}\)hoặc \(\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow x>2}\)
TH2 \(\hept{\begin{cases}4x-4< 0\\x^2-2x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}\Rightarrow}0< x< 1}\)
Vậy với \(0< x< 2\)hoặc \(x>2\)thì \(\frac{x}{x-2}+\frac{x+2}{x}>2\)