Đáp án D
Số phần tử của không gian mẫu là Ω = C 6 1 . C 6 1 = 6 . 6 = 36 .
Đáp án D
Số phần tử của không gian mẫu là Ω = C 6 1 . C 6 1 = 6 . 6 = 36 .
Cho phép thử là “gieo 10 con súc sắc cân đối, đồng chất phân biệt”. Khi đó số phần tử của không gian mẫu bằng
A. 6
B. 60
C. 10
D. 6 10
Gieo ngẫu nhiên hai con súc sắc cân đối và đồng chất a, mô tả không gian mẫu b, tính xác suất của biến cố A ,tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 B, hiệu chấm xuất hiện trên hai con xúc xắc bằng 3
Gieo một con xúc xắc cân đối đồng chất hai lần. Tính xác suất để biến cố có tổng hai mặt bằng 8
A. 1 9
B. 5 36
C. 1 6
D. 1 2
Gieo con xúc xắc được chế tạo cân đối và đồng chất 2 lần. Gọi a là số chấm xuất hiện trong lần gieo thứ nhất, b là số chấm xuất hiện trong lần gieo thứ hai. Xác suất để phương trình x 2 + a x + b = 0 có nghiệm bằng
A. 17 36
B. 19 36
C. 1 2
D. 4 9
Gieo ngẫu nhien một con súc sắc cân đối và đồng chất hai lần.
a.Hãy mô tả không gian mẫu.
b.Xác định các biến cố sau.
A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10"
B: "Mặt 5 chấm xuất hiện ít nhất một lần".
c.Tính P(A), P(B).
Cho phép thử là “gieo 2019 đồng xu phân biệt” và xét sự xuất hiện mặt sấp và mặt ngửa của các đồng xu. Khi đó số phần tử của không gian mẫu bằng
A. 2019
B. C 2019 1 + C 2019 3 + . . . + C 2019 2019
C. ∑ k = 0 2020 C 2020 k - ∑ k = 0 2019 C 2019 k
D. 2.
Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 7 là:
A. 2 9
B. 1 6
C. 7 36
D. 5 36
Gieo một con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện
a) Hãy mô tả không gian mẫu
A. Ω={2,4,6}
B. Ω={1,3,5}
C. Ω={1,2,3,4}
D. Ω={1,2,3,4,5,6}
Gieo một đồng tiền ba lần. Số phần tử của không gian mẫu là