a/ \(P=3x\left(4x-11\right)+5x^2\left(x-1\right)-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)
\(P=3x\left(4x-11\right)+5x^2\left(x-1\right)-4x.3\left(x+3\right)+x.5x\left(1-x\right)\)
\(P=3x\left(4x-11\right)-5x^2\left(1-x\right)-12x\left(x+3\right)+5x^2\left(1-x\right)\)
\(P=3x\left[4x-11-4\left(x+3\right)\right]\)
\(P=3x\left(4x-11-4x-12\right)\)
\(P=3x.132\)
\(P=396x\)
b/ Ta có \(\left|x\right|=2\)
<=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Thay x = 2 vào biểu thức P, ta có: P = 792
Tương tự với x = -2, ta cũng có: P = -792
Vậy \(P=\pm792\)khi \(\left|x\right|=2\)
c/ Để \(P=207\)
<=> \(396x=207\)
<=> \(x=\frac{207}{396}\)
Vậy \(x=\frac{207}{396}\)thì \(P=207\).