cho tam giác nhon ABC có M là trung điểm BC,kẻ AH vuông góc BC.Trên tia đối của tia HA lấy điểm E sao choHE=HA.trên tia đối của tia MA lấy điểm F sao cho MF=MA.chứng minh rằng
a)BE=CF
b)ME=MF
Cho tam giác ABC,M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho ME=MA.Chứng minh:
a,tam giác ABM=tam giác ECM
b,AB//CE
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại M
a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh AM vuông góc BC
c) Trên tia đối của tia MA lấy điểm E sao cho : ME = MA.
Chứng minh : AB//EC
cho tam giác ABC vuông tại A có M là trung điểm của BC.Trên tia đối của tia MA lấy điểm N sao cho MN=MA.Chứng minh:
a. AC vuông góc với NC;
b.BC=2.AM
cho tam giác ABC có BC=2AB. Gọi D là trung điểm của BC,I là trung điểm của AD, Mlà trung điểm của BD. Trên tia đối của tia MA lấy điểm E sao cho ME=MA.chứng minh:
a, BI là tia phân giác của góc ABD
b,AB=DE
c, tam giác ADE= tam giác ADC
Cho tam giác ABC và trung tuyến AM, AB<AC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA, nối B với E.
a, chứng
Cho tam giác ABC và trung tuyến AM, AB<AC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA, nối B với E.
a, chứng minh BE=AC và BE// AC
b, Gọi D là giao điểm của AB.Trên tia đối của tia DE lấy điểm F sao cho DF=DE. Chứng minh rằng A là trung điểm của CF
c, Hãy so sánh độ lớn hai góc BAM và góc MAC
Bài 2: Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC. a) Chứng minh rằng : BE = CD. b) Chứng minh: BE // CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh: AM=AN.
Cho tam giác ABC và trung tuyến AM, AB<AC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA, nối B với E.
a, chứng minh BE=AC và BE// AC
b, Gọi D là giao điểm của AB.Trên tia đối của tia DE lấy điểm F sao cho DF=DE. Chứng minh rằng A là trung điểm của CF
v
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)