Lời giải:
$A=27n^3-45n^2+24n-4=(3n-2)^2(3n-1)$
Để $A$ là số nguyên tố thì 1 trong 2 thừa số $3n-2$ hoặc $3n-1$ phải là $1$ và số còn lại là số nguyên tố.
Nếu $3n-2=1$ thì $n=1$. Khi đó: $A=1^2.2=2$ là số nguyên tố (tm)
Nếu $3n-1=1$ thì $n=\frac{2}{3}\not\in\mathbb{N}$ (loại)
Vậy $n=1$.