Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Linh

Xác đinh ̣ m để với moi ̣ x ta có \(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)

Lê Thị Thục Hiền
9 tháng 6 2021 lúc 9:53

Đk: \(x\in R\)

Có \(2x^2-3x+2>0;\forall x\)

\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) với \(\forall x\)\(\Leftrightarrow-2x^2+3x-2\le x^2+5x+m< 14x^2-21x+14\) với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0;\forall x\left(1\right)\\13x^2-26x+14-m>0;\forall x\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=3>0\left(lđ\right)\\\Delta\le0\end{matrix}\right.\)\(\Leftrightarrow4-4.3\left(m+2\right)\le0\)\(\Leftrightarrow-20-12m\le0\)\(\Leftrightarrow m\ge\dfrac{-5}{3}\)

Từ \(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=13>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m< 1\)

Vậy \(-\dfrac{5}{3}\le m< 1\)


Các câu hỏi tương tự
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
MiMi -chan
Xem chi tiết
Nguyễn Khắc Nam
Xem chi tiết
Hi Mn
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Lê Thị Mỹ Duyên
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
Phạm Thùy
Xem chi tiết