\(x^{19}+x^5-x^{2017}=\left(x^{19}-x\right)+\left(x^5-x\right)-\left(x^{2017}-x\right)+x\)
\(=x\left[\left(x^2\right)^9-1\right]+x\left[\left(x^2\right)^2-1\right]-x\left[\left(x^2\right)^{1008}-1\right]+x\)
\(=x\left(x^2-1\right).A_{\left(x\right)}+x\left(x^2-1\right)B_{\left(x\right)}-x\left(x^2-1\right)C_{\left(x\right)}+x\)
\(=x\left(x^2-1\right)\left(A_{\left(x\right)}+B_{\left(x\right)}+C_{\left(x\right)}\right)+x\)
Vậy số dư là x