Viết tập hợp sau bằng cách nêu tính chất đặc trưng:A={ \(\frac{2}{3}\);\(\frac{4}{5}\);\(\frac{6}{7}\);\(\frac{8}{9}\);\(\frac{10}{11}\)}
Xác định các tập sau bằng cách chỉ rõ tính chất đặc trưng (1,2/3, 3/5, 4/7, 5/9, 6/11, 7/13, 8/15,...)
Xác định các tập sau bằng cách chỉ ra tính chất đặc trưng:
A = {1; 3}
B = {-4; -3; -2; -1; 0; 1; 2; 3; 4}
C = {1; 2; 4; 8; 16; 32}
D = {0; 4; 8; 12; 16}
Viết mỗi tập hợp sau bằng cách chỉ rõ tính chấc đặc trưng cho các phần tử của nó
\(C=\left\{-\sqrt{5};-2;-\sqrt{3};-\sqrt{2};-1;0;\sqrt{5};2;\sqrt{3};\sqrt{2};1\right\}\)
Giải các pt sau bằng cách đặt ẩn phụ:
a/\(-4\sqrt{\left(4-x\right)\left(2+x\right)}=x^2-2x-12\)
b/\(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
c/\(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
d/\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)
e/\(\sqrt{x+7}+\sqrt{7x-6}+\sqrt{49x^2+7x-42}=181-14x\)
f/\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
Viết mỗi tập hợp sau bằng cách nêu tính chất đặc trưng:
a) A = { 0; 1; 2; 3; 4 }
b) B = { 0; 4; 8; 12; 16 }
c) C = { -3; 9; -27; 81 }
d) D = { 9; 36; 81; 144 }
e) E = { 2; 3; 5; 7; 11 }
f) F = { 3; 6; 9; 12; 15 }
tìm tập xác định của các hàm số :
a , \(y=\frac{\sqrt{3-x}+\sqrt{3+x}}{\left|x\right|-2}\)
b , \(y=\frac{\left|2x+1\right|-\sqrt{2}}{2x^2-3x+1}\)
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
xác định hàm số
a, \(y=\sqrt{x^2+x-4}\)
b , \(y=\frac{1}{x^2+1}\)
c, y= l 2x - 3 l
d , \(y=\frac{1}{x^2-3x}\)
e , \(y=\sqrt{1-x}+\frac{1}{x\sqrt{1}+x}\)
f , \(y=\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g , \(y=\sqrt{3+x}+\frac{1}{x^2-1}\)
h , \(y=\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(y=\sqrt{6-x}+2x\sqrt{2x+1}\)
j, \(y=\frac{x^2+1}{\sqrt{2-5}}+x\sqrt{1+x}\)
k, \(y=\frac{1}{x^2+3x+3}+\left(x+2\right)\sqrt{x+3}\)
l, \(y=\sqrt[3]{\frac{3x+5}{x^2-1}}\)