\(\dfrac{x+4}{104}+\dfrac{x+2}{102}=\dfrac{x+3}{103}+\dfrac{x+1}{101}\\ \Leftrightarrow\left(\dfrac{x+4}{104}-1\right)+\left(\dfrac{x+2}{102}-1\right)=\left(\dfrac{x+3}{103}-1\right)+\left(\dfrac{x+1}{101}-1\right)\\ \Leftrightarrow\dfrac{x-100}{104}+\dfrac{x-100}{102}-\dfrac{x-100}{103}-\dfrac{x-100}{101}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{104}+\dfrac{1}{102}-\dfrac{1}{103}-\dfrac{1}{101}\right)=0\\ \Leftrightarrow x-100=0\left(vì.\dfrac{1}{104}+\dfrac{1}{102}-\dfrac{1}{103}-\dfrac{1}{101}\ne0\right)\\ \Leftrightarrow x=100\)