Đáp án:x+3/x-3=3/x²-3x+1/x
Điều kiện xác định:x khác 3,x khác 0 (*)
(*) ⇔(x+3).x/x-3.x=3-3/x²-3-(3x+1).(x-3)/x.(x-3)
⇔x²+6x=-3x²-x+9x+3
⇔x²+6x+3x²+x-9x=3
⇔4x²-2x=3
⇔2x(2x-2x)=3
⇔2x=3
⇔x=3/2
vậy :S=(3/2)
\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{3x}{x^2-3x}\)
ĐKXĐ : \(x\ne0,x\ne3\)
\(=\frac{x+3}{x}-\frac{x}{x-3}+\frac{3x}{x\left(x-3\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x\cdot x}{x\left(x-3\right)}+\frac{3x}{x\left(x-3\right)}\)
\(=\frac{x^2-9}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{3x}{x\left(x-3\right)}\)
\(=\frac{x^2-9-x^2+3x}{x\left(x-3\right)}\)
\(=\frac{-9+3x}{x\left(x-3\right)}=\frac{3\left(x-3\right)}{x\left(x-3\right)}=\frac{3}{x}\)