Ta có:\(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\)
Dấu = xaye ra khi và chỉ khi x=y=0
Ta có:\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\Rightarrow x=1\\y+2=0\Rightarrow y=-2\end{cases}}\)
Ta có:\(\left(x-11+y\right)^2\ge0\forall x,y\)
\(\left(x-4-y\right)^2\ge0\)
\(\Rightarrow\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)
Dấu = xaye ra khi và chỉ khi \(\hept{\begin{cases}x-11+y=0\Rightarrow x+y=11\\x-4-y=0\Rightarrow x-y=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(11+4\right):2=7,5\\y=11-7,5=3,5\end{cases}}\)
a)vì x^2 và y^2 luôn luôn lớn hớn hoặc bằng 0 (1)
mà x^2+y^2=0
<=>x,y=0
b) cũng từ (1)
mà (x-1)^2+(y+2)^2=0
=>x-1=0=>x=1
y+2=0=>y=-2
c)cũng từ 1
=>x-11+y=0 (2)
và x-4-y=0 (3)
vì x-11=x-4-7
vì (3) là x-4-y
(2) là x-4-7+y => không tồn tại x thõa mãn đề bài
câu c)
mik ghi lộn nhé
ở phần => không ....
thì thay là =>x=7,5 và y=3,5
lí do là x-11=x-4-7
mà +y với -y hơn 2y => y=7:2=3,5
thay x là xong