\(-x^2+4x=0\)
\(\Leftrightarrow x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy PT có tập nghiệm S=\(\left\{0;4\right\}\)
\(-x^2+4x=0\)
\(\Leftrightarrow x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy PT có tập nghiệm S=\(\left\{0;4\right\}\)
(x2−4x)2−8(x2−4x)+15=0
Cho phương trình (1): x( x 2 – 4x + 5) = 0 và phương trình (2): ( x 2 – 1)( x 2 + 4x + 5) = 0.
Chọn khẳng định đúng
A. Phương trình (1) có một nghiệm, phương trình (2) có hai nghiệm
B. Phương trình (1) có hai nghiệm, phương trình (2) có một nghiệm
C. Hai phương trình đều có hai nghiệm
D. Hai phương trình đều vô nghiệm
Tim x, biết:
Câu 1. x2 + 4x + 4 = 9
Câu 2. 4x2 + 4x + 1 = 4
Câu 3. x2 + 2x - 8 =0
Câu 4. x2 + 4x - 12 = 0
Giải các phương trình:
a) 3 x − 3 4 − 2 − 4 x = 0 ;
b) x 2 − 4 x + 7 − 12 x + 7 = 0 ;
c) 4 − 4 + x + x x 2 − 16 = 0 ;
d) x 2 + 6 x − 7 = 0 .
Chứng minh rằng:
a) x2 + 10x + 100 > 0 ∀ x
b) -x2 + 4x - 100 < 0 ∀ x
c) x2 - 5x + 6 > 0 ∀ x
chứng tỏ các bất phương trình sau luôn nghiệm đungs với mọi x
x2 - 4x+5>0
chứng minh rằng -x2+4x-10/x2+1<0 với mọi x
tìm x để biểu thức x2-4x+5 đạt giá trị nhỏ nhất
tìm x để biểu thức -x2+4x+4 đạt giá trị lớn nhất
a, x2 - 4x = 0 b, (2x + 1)2 - 4x (x + 3) = 9
c, x2 -12x = -36
Tìm x, biết
b) x2 - 2x + 1 = 4
c) x2 - 4x + 4 = 9
d) 4x2 - 4x + 1 = 4
e) x2 - 2x - 8 = 0
f) 9x2 - 6x - 8 = 0
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
Giải các phương trình sau:
g/ x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
h/ (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
i/ (x + 2)(3 – 4x) = x2 + 4x + 4
k/ x(2x – 7) – 4x + 14 = 0
m/ x2 + 6x – 16 = 0
n/ 2x2 + 5x – 3 = 0