\(\Rightarrow x^2+y^2-3xxy=0\)
\(\Rightarrow x^2-2xy+y^2-xy=0\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\Rightarrow x-y=\sqrt{xy}=\sqrt{x}.\sqrt{y}\)
\(\Rightarrow x=\sqrt{x}.\sqrt{y}+y=\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)
\(\Rightarrow y=x-\sqrt{x}.\sqrt{y}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\frac{x}{y}=\frac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}\)