đặt \(A=\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{zx}}{y+3\sqrt{zx}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}\)
\(\Rightarrow1-3A=\frac{x}{x+3\sqrt{yz}}+\frac{y}{y+3\sqrt{zx}}+\frac{z}{z+3\sqrt{xy}}\)
\(\ge\frac{x}{x+\frac{3}{2}\left(y+z\right)}+\frac{y}{y+\frac{3}{2}\left(z+x\right)}+\frac{z}{z+\frac{3}{2}\left(x+y\right)}\)
\(=\frac{2x}{2x+3\left(y+z\right)}+\frac{2y}{2y+3\left(z+x\right)}+\frac{2z}{2z+3\left(x+y\right)}\)
\(=\frac{2x^2}{2x^2+3xy+3xz}+\frac{2y^2}{2y^2+3yz+3xy}+\frac{2z^2}{2z^2+3zx+3yz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+6\left(xy+yz+zx\right)}=\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{2\left(x+y+z\right)^2}{\frac{8}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
\(\Rightarrow1-3A\ge\frac{3}{4}\Rightarrow A\le\frac{3}{4}\left(Q.E.D\right)\)
cho x+y+z=4
cmr \(\frac{1}{xy}+\frac{1}{yz}\ge1\)
BL
TA CẦN CM \(\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge1\Leftrightarrow\frac{1}{y}+\frac{1}{z}\ge x\)
mà x=\(4-\left(y+z\right)\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}\ge4-\left(y+z\right)\Leftrightarrow\frac{1}{y}-2+y+\frac{1}{z}-2+z\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)^2+\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)^2\ge0\)(luôn đúng)
CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)
CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)
ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)
\(\Rightarrow x^2+y^2+z^2\ge1\)
\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)
TA CÓ:
\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:
\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}}
\)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)
DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)
chị QA
ta có đề bài <=>
\(\frac{x^2}{y}-2x+y+\frac{y^2}{z}-2y+z+\frac{z^2}{x}-2z+x+\left(x+y+z\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
=\(\frac{\left(x-y\right)^2}{y}-\left(x-y\right)^2+...+\left(x+y+z\right)\)
=\(\left(x-y\right)^2\left(\frac{1}{y}-1\right)+....+\left(x+y+z\right)\)
mà \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\Rightarrow x,y,z\in\left[0;1\right]\)
=> \(\frac{1}{y}-y>0\)
=> \(A\ge x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=\frac{1}{3}\)
theo định lí đi dép tổ ong thì 2 trong 3 số x-2;y-2;z-2 cùng dấu
giả sử \(\left(x-2\right)\left(y-2\right)\ge0\Leftrightarrow xy-2\left(x+y\right)+4\ge0\)
\(\Leftrightarrow xy-2\left(6-z\right)+4\ge0\)
<=>xy-8+2z>(=)0
<=>xyz+2z^2-8z>(=)0
<=>xyz>(=)8z-2z^2
\(x^2-xy+y^2\ge\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}=\frac{\left(6-z\right)^2}{4}=\frac{z^2}{4}-3z+9\)
xz+yz=z(x+y)=x(6-z)=6z-z2
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx+xyz\ge\frac{z^2}{4}-3z+9+z^2+z^2-6z+8z-z^2=\frac{z^2}{4}-z+9=\left(\frac{z}{2}-1\right)^2+8\ge8\)
Cho x,y,z>0 và xy+yz+zx=1
a, tính giá trị biểu thức:
\(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
b, CMR:
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}=\frac{2xy}{\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}}\)
đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)
ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)
\(\Leftrightarrow x^5-x^2\ge3x-3\)
cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)
\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)
\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)
áp dụng bunhia ta có:
\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)
cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)
đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)
\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)
\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)
\(\Rightarrow P\le1\)