`sqrt(x^2-6x+9) + 8 = 4`
`|x-3| + 8 = 4`.
`x > 3 -> x - 3 + 8 = 4`
`<=> x + 5 = 4`
`<=> x = -1(ktm)`.
`x < 3 -> 3 - x + 8 = 4`
`11 - x = 4`
`x = 7 (ktm)`.
Vậy PT vô nghiệm
`sqrt(x^2-6x+9) + 8 = 4`
`|x-3| + 8 = 4`.
`x > 3 -> x - 3 + 8 = 4`
`<=> x + 5 = 4`
`<=> x = -1(ktm)`.
`x < 3 -> 3 - x + 8 = 4`
`11 - x = 4`
`x = 7 (ktm)`.
Vậy PT vô nghiệm
Giải phương trình:
a. \(\sqrt{x^2-4}-x^2+4=0\)
b. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c. \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d. \(\sqrt{9x^2+6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
GIẢI PHƯƠNG TRÌNH:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c)\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
Tìm GTNN:
A. x^4 + x^2 - 6x + 9
B. (x-4)(x-1)(x-5)(x-8) + 2017
Mong các bạn giúp đỡ mình nha.
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Phương pháp 3. Sử dụng phép đặt ẩn phụ
a \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b \(x^2-6x+9=4\sqrt{6-6x+x^2}\)
c \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
d \(x^2+8x-3=2\sqrt{x\left(8+x\right)}\)
Giải các PT:
a, \(\sqrt{x^2-6x+9}\) = 4 - x
b, \(\sqrt{x^2-9}\) + \(\sqrt{x^2-6x+9}\) = 0
c, \(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3