\(\sqrt{x^2-4x+13}=3\)
\(ĐK:x\in R\)
\(\Leftrightarrow\text{}\)\(\left(\sqrt{x^2-4x+13}\right)^2=3^2\)
\(\Leftrightarrow x^2-4x+13=9\)
\(\Leftrightarrow x^2-4x+4=0\)
`<=>(x-2)^2=0`
`<=>x=2`
Vậy \(S=\left\{2\right\}\)
\(\sqrt{x^2-4x+13}=3\)
\(x^2-4x+13=9\)
\(x^2-4x+4=0\)
\(\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\sqrt{x^2}-4x+13=3\\ \Leftrightarrow x-4x=-10\\ \Leftrightarrow-3x=-10\\ \Leftrightarrow x=\dfrac{10}{3}\)