\(\left|x\right|=1+2+3+...+2010\)
\(\left|x\right|=\frac{\left(2010+1\right).2010}{2}\)
\(\left|x\right|=2011.1005\)
\(\left|x\right|=2021055\)
\(x=\pm2021055\)
\(2^x=2+4+6+...+2010\)
\(2^x=\frac{\left(2010+2\right).1005}{2}\)
\(2^x=1006.1005\)
\(x=\frac{log\left(1011030\right)}{log\left(2\right)}\)(Nguồn: wolframalpha)
\(697\div15a+\frac{364}{a}=17\)
\(\frac{697}{15a}+\frac{5460}{15a}=17\)
\(6157=17.15a\)
\(6197=255a\)
\(a=\frac{6197}{255}\)