Câu hỏi của linh chi - Toán lớp 9 - Học toán với OnlineMath
Bạn vào đây nha
\(\frac{1}{x}+\frac{2}{y}-3=\frac{1}{3-2y}+\frac{2}{y}-3=\frac{6\left(y-1\right)^2}{y\left(3-2y\right)}\ge0\)
Câu hỏi của linh chi - Toán lớp 9 - Học toán với OnlineMath
Bạn vào đây nha
\(\frac{1}{x}+\frac{2}{y}-3=\frac{1}{3-2y}+\frac{2}{y}-3=\frac{6\left(y-1\right)^2}{y\left(3-2y\right)}\ge0\)
cho x,y,z ≥ 0, chứng minh
1)\(\dfrac{1}{\sqrt{x+y}}\ge\dfrac{4}{4+x+y}\)
2)\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x^2+yz}\)
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
Cho x,y : x^2+x^2y^2-2y=0 và x^3+2y^2-4y+3=0
Tính giá trị biểu thức : Q = x^2+y^2
Cho 2 số x,y tm : x^2 + x^2.y^2 - 2y = 0 và x^3 + 2y^2 - 4y + 3 = 0
Tính giá trị của biểu thức Q = x^2 + y^2
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
cho x>0, y>0 và x*2+x*y=4. tìm giá trị nhỏ nhất của A=x^2y
giải hệ :1, x^3-6x^2y+9xy^2-4y^3=0 v căn (x-y) + căn (x+y) = 2
2,xy+x-2=0 v 2x^3-x^2y+x^2+y^2-2xy-y=0
cho x,y,z thỏa mãn: x3 +2y^2 -4y +3=0
và: x^2 + x^2.y^2 -2y=0
tính Q= x^2+y^2
Giải các hệ phương trình\(1, [1-12/(y+3x)] * căn(x) = 2 \)
và \([1+12/(y+3x)]*căn(y)=6\)
2, \(x^3+(x^2+1)(y^2+1)+y^2=2(3y-1)\)
và\(x^2+x^2y^2-2y=0\)
3, \(4x^3-3x+(y-1)*căn(2y+1)=0\)
và \(2x^2+x+căn[-y(2y+1)=0\)