(x - y2)2
= x2 - 2xy2 + (y2)2
= x2 - 2xy2 + y4
(x - y2)2
= x2 - 2xy2 + (y2)2
= x2 - 2xy2 + y4
( x – y ) 2 bằng:
A. x 2 + y 2
B. ( y – x ) 2
C. y 2 – x 2
D. x 2 – y 2
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Rút gọn biểu thức: 2(x – y)(x + y) + x + y 2 + x - y 2
Chứng minh đẳng thức : |
a ) ( x2 + y2 )2 – 4x2 y2 = ( x + y ) 2 ( x – y )2 |
6xy*(xy-y2)-8x2(x-y2)+5y2(x2+xy)voi x=1/2 y=2
Cho x2+y2=(x+y-z)2
CMR x2+(x-z)2/y2+(y-z)2 =x-z/y-z
rút gọn biểu thức sau
B=(2x-y2 )(2x+y2 )-(y2 -2x)2 -4xy2 tại x=1/2 và y=2
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
Bài 2. Phân tích đa thức thành nhân tử
a) 5x – 15y | b) 5x2y2 + 15x2y + 30xy2 |
c) x3 – 2x2y + xy2 – 9x | d) x(x2 – 1) + 3(x2 – 1) |
e) x2 – 10x + 25 | g) x2 – 64 |
h) (x + y)2 – (x2 – y2) | i) 5x2 + 5xy – x – y |
k) x2 – 25 + y2 + 2xy | l) 2xy – x2 – y2 + 16 |
m) (x – 2)(x – 3) + (x – 2) - 1 | n) 3(x – 1) + 5x( 1 – x) |
p) 12y(2x – 5) + 6xy(5 – 2x) | q) ax – 2x – a2 + 2a |
Bài 3. Phân tích đa thức thành nhân tử
a) a2 – b2 – 2a + 1 | b) x2 – 2x – 4y2 – 4y |
c) x2 + 4x – y2 + 4 | d) x4 – 1 |
e) x4 + x3 + x2 + x | g) a2 + 2ab + b2 – ac - bc |